
Anshuma Patel Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 3, (Part -2) March 2015, pp.38-45

www.ijera.com 38 | P a g e

“Investigative Compression Of Lossy Images By Enactment Of

Lattice Vector Quantization Technique With D4 Lattice System &

Spherical Truncation

Anshuma Patel*, Pallavi Choudhary**
*(Department of Electronics & Communication Engineering, SBITM, RGPV, Betul-460001)

** (Department of Electronics & Communication Engineering, SBITM, RGPV, Betul-460001)

ABSTRACT
In the digital era we live in, efficient representation of data generated by a discrete source and its reliable

transmission are unquestionable need. In this work we have focused on source coding taking image as source.

Lattice Vector Quantization (LVQ) can be used for source coding as well as for channel coding. (LVQ) with

Generator Matrix (GM) and codebook is implemented. When implementation using codebook is done, two

codebooks are constructed, one with 256 lattice points that are closest to (0,0,0,0) and another with 256 lattice

points that are closest to (1,0,0,0). Energy for both the codes is calculated. When we compare the energy of

both the codes we find that codes centered at a non lattice point is lower energy code.

Keywords – Lossy Image Compression, VQ, LVQ, GM.

I. INTRODUCTION

The process by which data representation is

accomplished is called source encoding. The device

that performs the representation is called a source

encoder. While for reliable transmission channel

encoder and channel decoder are required. Source

coding and channel coding both are very important

process of any digital communication systems.

Lattice Vector Quantization (LVQ) can be used for

source coding as well as for channel coding. In this

paper we have focused on source coding taking

image as source.

 Image compression is a process of obtaining a

compact representation for the image by reducing

the number of bits used to represent an image

sample without any reduction in the perceptual

quality. Image coding can be lossy or lossless. Run

length encoding and entropy coding are the methods

for lossless image compression. Transform coding,

where transform such as Discrete Cosine Transform

(DCT) or Discrete Wavelet Transform (DWT)

applied, followed by quantization and entropy

coding can be cited as a method for lossy image

compression. Due to the increasing traffic caused by

multimedia information and digitized form of

representation of images; image compression has

become a necessity. Uncompressed multi -media

(graphics, audio, Video) data requires considerable

storage capacity and transmission bandwidth despite

rapid progress in mass storage density. The recent

growth of data intensive multimedia-based web

applications have not only the need for more

efficient ways to encode signals and images but have

made compression of such signals central to storage

and communication technology.

II. LVQ: A BRIEF REVIEW
In lattice-based vector quantization, from the

finite subset of regular lattice points the codebook is

constructed [1]. The symmetry of regular lattice

makes the encoding and decoding very simple, as

selection and indexing of the nearest codeword for a

given input point becomes very straightforward.

Furthermore, the code words are not necessarily

stored; they can be generated by a set of simple

algebraic rules. Thus, lattice based quantization

offers an enormous reduction in the encoding

complication and eliminates the storage requirement;

these are the two inherent problems in implementing

a vector quantizer.

The quantization scheme requires knowledge of

the codebook by both the encoder and the decoder

prior to the process of quantization. In most cases,

particularly in VQ to satisfy this requirement the

codebook is also sent through the communication

channel, or included in the compressed file. As a

result, the overall compression ratio may be

significantly reduced, especially for large codebooks

or high dimensionality of vectors in the case of VQ.

Lattice quantization is free from this drawback

because it does not require transmission of the

complete codebook due to its regular structure and

as a result, it is possible to generate the codebook

independently at both the encoder and decoder ends.

Usually in a lattice based vector quantizer, the lattice

is truncated such that the desired number of lattice

points fall inside the boundary. Probability density

function (pdf) of given source, only a few of these

lattice points are used. Efficient algorithms exist for

implementing a lattice quantizer. In the existing

methods, indexing requires excessive storage or

RESEARCH ARTICLE OPEN ACCESS

Anshuma Patel Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 3, (Part -2) March 2015, pp.38-45

www.ijera.com 39 | P a g e

complex enumeration algorithms. Our focus is on

the efficient indexing method.

II. METHODOLOGY
The lattice based vector quantizer encodes the

source vectors by mapping them into the lattice

points. Since lattice is a regular structure there is no

need to generate and store the codebook. It makes

the encoding and decoding very simple as selection

of the nearest codeword for a given input becomes

very straightforward. Following steps are involved

in the designing of lattice vector quantizer-

2.1 Optimum Lattice

The first question to be addressed in LVQ is the

choice of the optimum lattice. This choice

addresses the problem of best space covering by

overlapping spheres. This problem finds a strong

analogy with the sphere packing theory, where it is

searched to arrange the maximal number of equal

non overlapping spheres in a given volume in n-

dimensional space. The best packing lattice will be

the one providing the densest packing of identical

spheres together [2]. The best packing lattices in

different dimension are as follows

Table 2.1: Densest packing lattice in various dimensions

Dimension Densest Packing

Lattice

1 Z = Λ1

2 A2 = Λ2

3 A3 = D3 = Λ3

4 D4 = Λ4

5 D5 =Λ5

6 E6 =Λ6

7 E7 =Λ7

8 E8 =Λ8

9 Λ9

10 Λ10 (P10c)

12 K12

16 BW 16 ≈ Λ16

24 Leech≈ Λ24

2.2 Truncation of Lattice

In order to obtain best trade off distortion rate,

we must scale and truncate the lattice suitably. To

do this, we need to know how many lattice points lie

within the truncated area. Hence we need to know

the shape of the truncated area. Generally, the

truncation or lattice support is defined by means of a

norm N(x) of the lattice points which should be less

than a given value K:

  )1()(,,, 21  KxNxxxx nk 

 The truncation shape is spherical if N is the

Euclidean norm or 2l norm, or pyramidal if the N is

1l , or rectangular if N is the maximum norm i.e. the

maximum absolute value of the lattice vector

components. Also other, more general norms can be

considered. The 1l and 2l norms defined

respectively by





n

i

ixl
1

1

)2(
1

2

2 



n

i

ixl

In truncating lattice points, two parameters should

be defined viz (i) the shape of the boundary and (ii)

the radial parameter. For minimum distortion, the

shape of the boundary is the shape of the contour of

constant probability density function (PDF). The

shape of the truncated area or codebook is

determined according to the statistics of the source.

Most sub band image data can describe by a

generalized Gaussian PDF or Laplacian PDF. When

the signal to be compressed has Gaussian

distribution, the surfaces of equal probability are

ordinary spheres. The truncated area is then

spherical. When the source signal has Laplacian

distribution, the contour is pyramidal. Mathematical

and graphical representations of Gaussian and

Laplacian distribution are as follows:-

Gaussian distribution:

)3(2/
2

1
)(2)(

2

2




ax

g exf 

With mean a and  standard deviation.

Pyramidal distribution

)4(
2

)(
x

p exf
 



Anshuma Patel Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 3, (Part -2) March 2015, pp.38-45

www.ijera.com 40 | P a g e

Fig2.1: Gaussian distribution and Pyramidal distribution

The isonorms defined by the norm have, in the

case of two dimensions, a circular

shape as shown in

fig 2.1. The isonorms have the shape of spheres for

a three- dimensional space and of hyper spheres for

dimensions higher than three. Similarly, the

isonorms defined by the norm form pyramids or

hyperpyramids [3]. It is then necessary to determine

the number of points lying on a hypersphere or on a

hyper pyramid.

Fig 2.2: Representation of the circular truncation for

hexagonal lattice (A2)

Fig 2.3 shows pyramidal truncation with code

radius (m) =2 and Z2 cubic lattice number of lattice

points on pyramidal truncation will be 13 i.e. size of

the codebook 13 [4]. From figure 3 codebook C =

{Y1, Y2, ----------------, Y13}, where Y1, -------------

------ Y13 are code vectors. Lattice code vectors on

different shells are Cs (0) = 1, Cs (1) = 4 and Cs (2)

= 8. Counting of lattice points is explained in detail

in the next topic.

Fig2.3: Representation of pyramidal truncation for two

dimensional cubic lattice (Z2)

The truncation shape is rectangular if the norm is

maximum norm i.e. the maximum absolute value of

the lattice vector components [5].

Fig 2.4: Representation of the rectangular truncation for two

dimensional cubic lattices (Z2)

A given norm defines, in addition to the lattice

truncation, the lattice shell, as the set of lattice points

that have the same norm value, K:

  )3()(,,, 21  KxNxxxx nk 

Consequently, the lattice truncation can be seen as a

union of lattice shells. The truncated lattice points

must be scaled to achieve minimum distortion. The

best scaling is found by repeated experiments.

2.3 Counting lattice points

Successful application of a lattice is only possible if

there exist enough lattice points available for

quantization. The use of lattice truncations as

quantizers implies knowing the number of lattice

code vectors inside the considered truncation.

Following the definition of a lattice truncation as a

union of shells, counting the lattice points reduces to

finding expressions for the cardinality of a shell, i.e.

the number of lattice points at a given distance from

the origin, under the specified norm. The solution of

this problem is given by the theta functions for 2l

norm for many standard lattices in [6]. In [7] the

theta functions have been generalized for the norm

lp
 and in [8], [9] for weighted 2l norms. In [10]

the theta series approach is used to count the lattice

points on spherical (2l norm) shells and generalized

to pyramidal (1l norm) shells. Theta function of the

lattice  is defined as

)5()(
0






 
m

m

mqNz

Where mN
is the number of lattice vectors with

norm squared m (i.e. the number of lattice points at

a distance m from the origin), z is a real number and

q=e
πiz

Anshuma Patel Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 3, (Part -2) March 2015, pp.38-45

www.ijera.com 41 | P a g e

Theta functions of some lattices can be specified in

terms of the classical Jacobi theta functions θ2, θ3

and θ4, which are defined as follows:

θ2 (z) = 





m

m

mq
0

))2/1(1(2

2

 4/254/94/1 222 qqq

)6()1(2 2012624/1  qqqqq

θ3 (z) = 





1

2

21
m

mq

94 2221 qqq 

)7()1(21 1583  qqqq

θ4 (z) = 





1

2

)(21
m

mq

 94 2221 qqq

)8().1(21 1583  qqqq

Theta function of some lattices-

)9()3()()3()()(22332
zzzzzA  

)10())(()(3 n

Z
zzn 

)11())
2

()
2

((
2

1
)(4

4

4

34


zz
zD  

)12())
2

()
2

((
2

1
)(43 nn

D

zz
z

n
 

)13())
2

()
2

()
2

((
2

1
)(8

4

8

3

8

28


zzz
zE  

The first 50 coefficients of the Theta series for A2

are shown in Table 2.2 and Figure 2.5

Table2.2: The first 50 coefficients of the Theta series with

starting point at zero for the A2 lattice

1, 6, 0, 6, 6, 0, 0, 12, 0, 6, 0, 0, 6, 12, 0, 0,

6, 0, 0, 12, 0, 0, 0, 6, 0,

6, 12, 0, 0, 12, 0, 0, 0, 6, 12, 0, 12, 0, 0, 0,

12, 0, 0, 0, 0, 6, 18

Figure 2.5: The first 6 non-zero shells of A2 is shown as

large circles (incl. the one at the origin). Notice that

the number of points lying on each circle agrees with

the corresponding coefficient of the Theta series. [13]

The first 50 coefficients of the Theta series for

D4 are shown in Table 3
Table 2.3: The first 50 coefficients of the Theta series

with starting point at zero for the D4 lattice

1, 0, 24, 0, 24, 0, 96, 0, 24, 0, 144, 0, 96, 0,

192, 0, 24, 0, 312, 0, 144, 0, 288, 0, 96, 0,

336, 0, 192, 0, 576, 0, 24, 0, 432, 0, 312, 0,

480, 0, 144, 0, 768, 0, 288, 0, 576, 0, 96, 0

The first 10 coefficients of the Theta series for

E8 are shown in Table 4. [13]

Table 2.4: The first 10 coefficients of the Theta series

for the E8 lattice

240, 2160, 6720, 17520, 30240, 60480,

82560, 140400, 181160, 272160

2.4 Quantization Algorithm

Conway and Sloane [17] developed algorithms for

finding the closest lattice point of the n-dimensional

lattices such as Ζn, Dn and E8 lattice to an input

vector x.

Finding the closest point of D4 lattice- For a given x

=(x1, x2, x3, x4) vector following are the steps to

find out the closest lattice points of D4 lattice.

Step1: f(x) = round(x).

Step 2: Check sum {f(x)}, if it is even number, f(x)

will be the closest lattice point of x, else if sum is an

odd number then do step 3.

Step 3: Calculate h(x). To calculate h(x) change one

coordinate value of f(x), for which the difference

between the original value of the coordinate of x and

its round off value in f(x) is maximum.

For example if x1= (0.2, 1.8, -0.7, 0.4) and x2 =

(0.4, 0.7,-1.1, 1.8) are two input vectors, then

according to the algorithm

Step 1: f(x1) = (0, 2,-1, 0) and f(x2) = (0, 1, -1, 2)

Anshuma Patel Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 3, (Part -2) March 2015, pp.38-45

www.ijera.com 42 | P a g e

Step 2: Sum{f(x1)} = 1 (odd number) and

Sum{f(x2)} = 2 (even number), for x2 Sum{f(x2)}is

an even number, so the closest lattice point will be

f(x2) i.e. (0,1,-1,2), while for x1 Sum{f(x1)}is an

odd number so step 3 is

Step 3: h(x1) = (0, 2,-1,1), sum{h(x1)}= 2 (even

number), so the closest lattice point for x1 will be

(0, 2,-1,1).

Finding the closest point of E8 lattice- Following are

the steps to find out the closest point of E8 lattice to

x. Given .

Step 1- Compute f(x) and g(x), where f(x) is closest

integer to x and g(x) is same as f(x) except that the

worst component of x, that furthest from an integer,

is rounded the wrong way.

Step 2- Select whichever has an even sum of

components, either f(x) or g(x), call the result z0

Step 3-Compute and , where and select

whichever has an even sum of components, add

and call the result z1.

Step 4-Calculate (x- z0)2 and (x- z1)2

Step 5- Compare the result. If (x- z0)2 < (x- z1)2

choose z0 as the closest point of x, else choose z1

2.5 Indexing the vectors in truncated lattices

When for a vector, lattice point is assigned, the

next step is to assign index to that point. There are

various indexing methods proposed for different

lattice types and truncation in the literature. An

indexing technique based on the notion of leader

vector of a lattice was developed in [9] for and

lattices. In [3] an enumeration based on signed

leaders or generated signed leaders valid for a large

class of lattices (, , and) is presented. A method

for indexing a leader based on partition function

having link with the number theory is described in

[11], [12].

They used a partition function q(r, n) which not

only gives the total number of leaders lying on a

given hyper-pyramid but can also be used to provide

unique indices for these leaders. For indexing of

lattice quantized vectors product code indexing

method is used to assign indexes to the quantized

vectors. Index assigned by this method consists of a

pair of prefix and suffix. Where prefix is the radius

R or norm or energy of the vector, it can be easily

encoded. Suffix is the index of the position of the

vector on the shell of radius R. Indexing and coding

of suffix is a difficult operation. Indexing of the

suffixing can be done in two ways.

In first method shown in Table 5 all same norm

vectors of D4 lattice and pyramidal truncation are

arranged in lexicographical order and indexes are

assigned to them. So in this case final index is

(energy of the vector, index of the vector on the shell

of same energy). While in the second method index

of suffix is based on leader addressing, in this case

index of suffix consists of leader index and rank of

the vector in the class of equivalence shown in

Table2.6

Table 2.5: Indexing of suffix based on enumerating

lattice points
Prefix

(norm
or

radius

or
energy)

Lattice code

vector

Suffix

(position of
the vector

on the shell

of energy
2)

Index=

(Prefix,
Suffix)

2 2 0 0 0 1 (2,1)

0 2 0 0 2 (2,2)

0 0 2 0 3 (2,3)

0 0 0 2 4 (2,4)

1 1 0 0 5 (2,5)

1 0 1 0 6 (2,6)

1 0 0 1 7 (2,7)

0 1 1 0 8 (2,8)

0 1 0 1 9 (2,9)

0 0 1 1 10 (2,10)

1 0 0 -1 11 (2,11)

1 0 -1 0 12 (2,12)

1 -1 0 0 13 (2,13)

0 1 0 -1 14 (2,14)

0 1 -1 0 15 (2,15)

0 0 1 -1 16 (2,16)

0 0 -1 1 17 (2,17)

0 -1 1 0 18 (2,18)

0 -1 0 1 19 (2,19)

-1 1 0 0 20 (2,20)

-1 0 1 0 21 (2,21)

-1 0 0 1 22 (2,22)

0 0 0 -2 23 (2,23)

0 0 -2 0 24 (2,24)

0 -2 0 0 25 (2,25)

-2 0 0 0 26 (2,26)

0 0 -1 -1 27 (2,27)

0 -1 0 -1 28 (2,28)

0 -1 -1 0 29 (2,29)

-1 0 0 -1 30 (2,30)

-1 0 -1 0 31 (2,31)

-1 -1 0 0

32 (2,32)

Anshuma Patel Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 3, (Part -2) March 2015, pp.38-45

www.ijera.com 43 | P a g e

Table 2.6: Indexing of suffix based on leader

indexing

2.6 Coding of index

Entropy coding or lossless coding is traditionally the

last stage in an image compression scheme. The run-

length coding technique is very popular choice for

lossless coding. [13] Reports an efficient entropy

coding technique for sequences with significant runs

of zeros. The scheme is used on test data

compression for a system-on-chip design. [14] the

scheme incorporates variable length coding and

Golomb codes which provide a unique binary

representation for run-length integer symbol with

different lengths. Golomb coding algorithm

contains tunable parameter M, run length N means

count of continuous number of 0’s followed by 1.

The first step in the encoding procedure is to select

the Golomb code parameter M i.e. group size. The

value of M is taken in which the compression ratio is

highest. Once the group size M is determined, the

runs of zeros in precomputed test set are mapped to

groups of size M (each group corresponding to a run

length). The number of such groups is determined

by the length of the longest run of zeros in the

precomputed test set. The set of run lengths {0, 1, 2

. . ., m-1} forms group G1; the set {m, m+1, m+2 . . .

, 2m-1}, G2 group; etc. In general, the set of run

lengths {(k-1) m, (k-1) m+1, (k-1) m+2 . . ., km-1}

comprises group Gk [15]. To each group Gk, we

assign a group prefix of (k - 1) 0s followed by 1.

We denote this by 0(k-1)1. If M is chosen to be a

power of two, i.e., M = 2m, each group contains 2m

members and a log2M-bit sequence (tail) uniquely

identifies each member within the group. Thus, the

final code word for a run length L that belongs to

group Gk is composed of two parts, a group prefix

and a tail. The prefix is 0(k-1)1 and the tail is a

sequence of log2M bits. It can be easily shown that

(k - 1) = (m mod M) i.e., k = (m mod M) + 1. The

encoding process is illustrated in table 1 for M = 4.

First group will consist of the run length

{0,1,2,3}and second group will consist of the run

length {4,5,6,7} and so forth. Group 1 will have a

prefix {0}, group 2 will have prefix {10}, and so

forth. Since the value of group size is 4, the length

of tail is log24=2. For run length 0 the tail is

represented by bits {00, the tail for run length 1 is

represented by bits {10}, and so forth. Since the

codeword is the combination of the group prefix and

the tail, for run-length of 0 will have the codeword

of {000}, the run length 1 will have codeword

{001}, and so forth. If the input sequence has

continuous 1’s and 0’s then Golomb coding is not a

suitable method to code this type of sequence,

because after coding number of bits get increased.

So the solution is, two value Golomb coding (2-V

Golomb coding) [16]. This method is same as

Golomb coding with the difference that we calculate

run length as count of continuous 0’s or continuous

1’s. Advantage of such modification in algorithm is

that as both runs of 0’s and 1’s are considered, so

large number of continuous ones may also be coded

with few bits, which is not possible with Golomb

coding.

Table 2.7: Golomb coding for M=4

Anshuma Patel Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 3, (Part -2) March 2015, pp.38-45

www.ijera.com 44 | P a g e

Another advantage is that in Golomb coding if the

input sequence does not end with one we have to

apply extra bit 1 at the end but we don’t have to

insert 1 at the end of sequence in two value Golomb

coding. This modified algorithm is known as 2-V

Golomb coding as both runs of 0’s and 1’s are

considering. For example to represent 45 input bits

shown as S, Golomb coding representation requires

64 bits while with 2-value Golomb coding only 33

bits are required. S1 and S2 show group of input bits

in case of Golomb coding and 2-value golomb

coding respectively. Input sequence

(S)={00000000100000000001000011111111111100

000001 1 }

S1= {000000001 00000000001 00001 1 1 1 1 1

1 1 1 1 1 1 00000001 1}

S2= {00000000 1 0000000000 1 0000

111111111111 0000000 11}

Table 2.8: Comparison of Golomb coding and

Two-value Golomb coding

III. RESULT
In this work, initially image coding using

Lattice Vector Quantization (LVQ) with Generator

Matrix (GM) and codebook is implemented. When

implementation using codebook is done,two

codebooks are constructed, one with 256 lattice

points that are closest to (0,0,0,0) and another with

256 lattice points that are closest to (1,0,0,0).

Energy for both the codes is calculated. When we

compare the energy of both the codes we find that

codes centered at a nonlattice point is lower energy

code.

IV. CONCLUSION
In this work, different LVQ methods are

applied for image compression on various standard

test images and the outputs are analyzed. Lattice

Vector Quantization performance depends on the

length of the codebook. If the number of lattice

points is less in a codebook, the time required to get

quantized lattice point will be less but at the same

time quality of reconstructed image will be

degraded. If the size of the codebook is larger then

the time required to search nearest vector will be

more. So to avoid these situations, one solution is

expansion of codebook when needed.

References
[1] M. Shnaider, “Lattice Vector Quantization

for Wavelet based Image Coding”, in

Advances in Imaging and Electron Physics,

Vol. 109.

 [2] J. H. Conway and N.J.A. Sloane, “Voronoi

Region of Lattices, Second Moments of

Polytopes, and Quantization,” IEEE

transaction on Information Theory, Vol. IT-

28, pp. 211-226, Mar.1982.

 [3] Patrick Rault and Christine Guillemot,

“Lattice vector quantization with

reduced or without look-up table", Proc.

SPIE Vol. 3309, pp. 851-862, Visual

Communications and Image Processing '98

 [4] Won-Ha Kim, Yu-Hen Hu and Truong Q.

Nguyen, “Wavelet – Based Image Coder

with Entropy Constrained Lattice Vector

Quantizer (ECLVQ)” IEEE transactions on

circuits and systems-II: Analog and Digital

Signal Processing, 1998, Vol-45, No.8., pp.

1015-1030.

 [5] Adriana Vasilache, “Entropic Encoding Of

Lattice Codevectors Based on Product Code

Indexing”, 16th European Signal Processing

Conference (EUSIPCO 2008), Lausanne,

Switzerland, August 25-29, 2008, copyright

by EURASIP

 [6] N. J. A. Sloane, “Tables of Sphere Packings

and Spherical Codes,” IEEE transactions

on Information Theory, Vol. IT-27, No. 3,

1981.

[7] P. Sole, “Generalized Theta Functions for

Lattice Vector Quantization,” Proceedings

of IEEE International Symposium on

Information Theory, 1993

[8] Michel Barlaud, Patrick sole, Thierry

Gaidon, Marc Antonini and Pierre Mathieu,

“Pyramidal Lattice Vector Quantization for

Multiscale Image Coding,” IEEE

Transaction of Image Processing, Vol.3, No.

4, pp. 367-381, July 1994 .

 [9] J. Moureaux, P. Loyer, and M. Antonini,

“Low Complexity Indexing Method for Z
n

and D
n
 Lattice Quantizers,” IEEE Trans.

Commun., Vol. 46, No. 12, pp. 1602–1609,

December 1998.

[10] A. Vasilache, M. Vasilache,. & I. Tabus, “

Predictive Multiple-Scale Lattice VQ for

LSF Quantization,” Proceedings of ICASSP

1999, pp. 657–660, 1999

[11] L. H. Fonteles and M. Antonini , “High

Dimension Lattice Vector Quantizer Design

for Generalized Gaussian Distributions,”

IEEE International Conference (ICIP) 2007

 [12] L. H. Fonteles and M. Antonini, “Indexing

Z
n
 Lattice Vectors for Generalized

Anshuma Patel Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 3, (Part -2) March 2015, pp.38-45

www.ijera.com 45 | P a g e

Gaussian Distributions,” in Proc. of IEEE

ISIT, pp. 241-245, June 2007.

[13] A. Chandra and K. Chakrabarty, “System-

on-a-chip Test Data Compression and

Decompression Architectures based on

Golomb Codes,” IEEE Transactions on

Computer-Aided Design of Integrated

Circuits and Systems, Vol. 20, No. 3, pp.

355–368, 2001.

[14] S. W. Golomb, “Run-length Encodings,”

IEEE Transactions on Information Theory,

Vol. 12, No. 3, pp. 399–401, 1966.

[15] M.F.M. Salleh and J. Soraghan, “A New

Multistage Lattice Vector Quantization with

Adaptive Subband Thresholding for Image

Compression,” EURASIP Journal on

Advances in Signal Processing, Vol. 2007,

article ID 92928, 11 pages, 2007.

[16] Po-Chang Tsai, Sying-Jyan Wang, Ching-

Hung lin, Tung-Hua Yeh, “Test data

=compression for Minimum Test

==Application Time”, Journal of

Information Science and Engineering 23,

1901-1909 (2007).

[17] J. H. Conway and N. J. A. Sloane, “Fast

Quantizing and Decoding Algorithms for

Lattice Quantizers and Codes,” IEEE

transaction on Information Theory, Vol. IT-

28, pp. 227-232, Mar.1982.

