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ABSTRACT 
In the digital era we live in, efficient representation of data generated by a discrete source and its reliable 

transmission are unquestionable need.  In this work we have focused on source coding taking image as source. 

Lattice Vector Quantization (LVQ) can be used for source coding as well as for channel coding. (LVQ) with 

Generator Matrix (GM) and codebook is implemented.  When implementation using codebook is done, two 

codebooks are constructed, one with 256 lattice points that are closest to (0,0,0,0) and another with 256 lattice 

points that are closest to (1,0,0,0).   Energy for both the codes is calculated.  When we compare the energy of 

both the codes we find that codes centered at a non lattice point is lower energy code.  

Keywords – Lossy Image Compression, VQ, LVQ, GM. 
 

I. INTRODUCTION 

The process by which data representation is 

accomplished is called source encoding.  The device 

that performs the representation is called a source 

encoder.  While for reliable transmission channel 

encoder and channel decoder are required. Source 

coding and channel coding both are very important 

process of any digital communication systems.  

Lattice Vector Quantization (LVQ) can be used for 

source coding as well as for channel coding.  In this 

paper we have focused on source coding taking 

image as source. 

 Image compression is a process of obtaining a 

compact representation for the image by reducing 

the number of bits used to represent an image 

sample without any reduction in the perceptual 

quality.  Image coding can be lossy or lossless.  Run 

length encoding and entropy coding are the methods 

for lossless image compression.  Transform coding, 

where transform such as Discrete Cosine Transform 

(DCT) or Discrete Wavelet Transform (DWT) 

applied, followed by quantization and entropy 

coding can be cited as a method for lossy image 

compression. Due to the increasing traffic caused by 

multimedia information and digitized form of 

representation of images; image compression has 

become a necessity.  Uncompressed multi -media 

(graphics, audio, Video) data requires considerable 

storage capacity and transmission bandwidth despite 

rapid progress in mass storage density.  The recent 

growth of data intensive multimedia-based web 

applications have not only the need for more 

efficient ways to encode signals and images but have 

made compression of such signals central to storage 

and communication technology.  

 

II. LVQ: A BRIEF REVIEW 
In lattice-based vector quantization, from the 

finite subset of regular lattice points the codebook is 

constructed [1].  The symmetry of regular lattice 

makes the encoding and decoding very simple, as 

selection and indexing of the nearest codeword for a 

given input point becomes very straightforward.  

Furthermore, the code words are not necessarily 

stored; they can be generated by a set of simple 

algebraic rules.  Thus, lattice based quantization 

offers an enormous reduction in the encoding 

complication and eliminates the storage requirement; 

these are the two inherent problems in implementing 

a vector quantizer. 

The quantization scheme requires knowledge of 

the codebook by both the encoder and the decoder 

prior to the process of quantization.  In most cases, 

particularly in VQ to satisfy this requirement the 

codebook is also sent through the communication 

channel, or included in the compressed file.  As a 

result, the overall compression ratio may be 

significantly reduced, especially for large codebooks 

or high dimensionality of vectors in the case of VQ.  

Lattice quantization is free from this drawback 

because it does not require transmission of the 

complete codebook due to its regular structure and 

as a result, it is possible to generate the codebook 

independently at both the encoder and decoder ends.  

Usually in a lattice based vector quantizer, the lattice 

is truncated such that the desired number of lattice 

points fall inside the boundary. Probability density 

function (pdf) of given source, only a few of these 

lattice points are used.  Efficient algorithms exist for 

implementing a lattice quantizer. In the existing 

methods, indexing requires excessive storage or 
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complex enumeration algorithms.  Our focus is on 

the efficient indexing method. 

 

II. METHODOLOGY 
The lattice based vector quantizer encodes the 

source vectors by mapping them into the lattice 

points.   Since lattice is a regular structure there is no 

need to generate and store the codebook.  It makes 

the encoding and decoding very simple as selection 

of the nearest codeword for a given input becomes 

very straightforward.  Following steps are involved 

in the designing of lattice vector quantizer- 

 

2.1 Optimum Lattice 

The first question to be addressed in LVQ is the 

choice of the optimum lattice. This choice 

addresses the problem of best space covering by 

overlapping spheres.  This problem finds a strong 

analogy with the sphere packing theory, where it is 

searched to arrange the maximal number of equal 

non overlapping spheres in a given volume in n-

dimensional space.  The best packing lattice will be 

the one providing the densest packing of identical 

spheres together [2].  The best packing lattices in 

different dimension are as follows 

 
Table 2.1: Densest packing lattice in various dimensions 

Dimension Densest Packing 

Lattice 

1 Z   = Λ1 

2 A2   = Λ2 

3 A3 = D3   = Λ3 

4 D4   = Λ4 

5 D5   =Λ5 

6 E6   =Λ6 

7 E7   =Λ7 

8 E8   =Λ8 

9 Λ9 

10 Λ10     (P10c) 

12 K12 

16 BW 16 ≈  Λ16 

24 Leech≈ Λ24 

 

2.2 Truncation of Lattice 

In order to obtain best trade off distortion rate, 

we must scale and truncate the lattice suitably.  To 

do this, we need to know how many lattice points lie 

within the truncated area.  Hence we need to know 

the shape of the truncated area. Generally, the 

truncation or lattice support is defined by means of a 

norm N(x) of the lattice points which should be less 

than a given value K: 

   )1()(,,, 21  KxNxxxx nk 

 The truncation shape is spherical if N is the 

Euclidean norm or 2l  norm, or pyramidal if the N is 

1l , or rectangular if N is the maximum norm i.e. the 

maximum absolute value of the lattice vector 

components.  Also other, more general norms can be 

considered. The 1l and 2l  norms defined 

respectively by  
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In truncating lattice points, two parameters should 

be defined viz (i) the shape of the boundary and (ii) 

the radial parameter.  For minimum distortion, the 

shape of the boundary is the shape of the contour of 

constant probability density function (PDF).  The 

shape of the truncated area or codebook is 

determined according to the statistics of the source.  

Most sub band image data can describe by a 

generalized Gaussian PDF or Laplacian PDF.  When 

the signal to be compressed has Gaussian 

distribution, the surfaces of equal probability are 

ordinary spheres. The truncated area is then 

spherical.  When the source signal has Laplacian 

distribution, the contour is pyramidal.  Mathematical 

and graphical representations of Gaussian and 

Laplacian distribution are as follows:- 
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Fig2.1: Gaussian distribution and Pyramidal distribution 

 

The isonorms defined by the   norm have, in the 

case of two dimensions, a circular

 
shape as shown in 

fig 2.1.  The isonorms have the shape of spheres for 

a three- dimensional space and of hyper spheres for 

dimensions higher than three.  Similarly, the 

isonorms defined by the   norm form pyramids or 

hyperpyramids [3].  It is then necessary to determine 

the number of points lying on a hypersphere or on a 

hyper pyramid. 

 

Fig 2.2: Representation of the circular truncation for 

hexagonal lattice (A2) 

 

Fig 2.3 shows pyramidal truncation with code 

radius (m) =2 and Z2 cubic lattice number of lattice 

points on pyramidal truncation will be 13 i.e. size of 

the codebook 13 [4].  From figure 3 codebook C = 

{Y1, Y2, ----------------, Y13}, where Y1, -------------

------ Y13 are code vectors.  Lattice code vectors on 

different shells are Cs (0) = 1, Cs (1) = 4 and Cs (2) 

= 8. Counting of lattice points is explained in detail 

in the next topic. 

 

Fig2.3: Representation of pyramidal truncation for two 

dimensional cubic lattice (Z2) 

The truncation shape is rectangular if the norm is 

maximum norm i.e. the maximum absolute value of 

the lattice vector components [5]. 

 

Fig 2.4: Representation of the rectangular truncation for two 

dimensional cubic lattices (Z2) 

 

A given norm defines, in addition to the lattice 

truncation, the lattice shell, as the set of lattice points 

that have the same norm value, K: 

   )3()(,,, 21  KxNxxxx nk   

Consequently, the lattice truncation can be seen as a 

union of lattice shells.  The truncated lattice points 

must be scaled to achieve minimum distortion.  The 

best scaling is found by repeated experiments. 

 

2.3 Counting lattice points 

Successful application of a lattice is only possible if 

there exist enough lattice points available for 

quantization.  The use of lattice truncations as 

quantizers implies knowing the number of lattice 

code vectors inside the considered truncation.  

Following the definition of a lattice truncation as a 

union of shells, counting the lattice points reduces to 

finding expressions for the cardinality of a shell, i.e. 

the number of lattice points at a given distance from 

the origin, under the specified norm.  The solution of 

this problem is given by the theta functions for 2l  

norm for many standard lattices in [6]. In [7] the 

theta functions have been generalized for the norm 

lp
 and in [8], [9] for weighted 2l  norms.  In [10] 

the theta series approach is used to count the lattice 

points on spherical ( 2l norm) shells and generalized 

to pyramidal ( 1l  norm) shells.  Theta function of the 

lattice  is defined as 

)5()(
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Where mN
is the number of lattice vectors with 

norm squared m (i.e.  the number of lattice points at 

a distance m from the origin), z is a real number and 

q=e
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Theta functions of some lattices can be specified in 

terms of the classical Jacobi theta functions θ2, θ3 

and θ4, which are defined as follows:  

θ2 (z) = 
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Theta function of some lattices- 
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The first 50 coefficients of the Theta series for A2 

are shown in Table 2.2 and Figure 2.5 

 
Table2.2: The first 50 coefficients of the Theta series with 

starting point at zero for the A2 lattice 

_________________________________ 

1, 6, 0, 6, 6, 0, 0, 12, 0, 6, 0, 0, 6, 12, 0, 0, 

6, 0, 0, 12, 0, 0, 0, 6, 0, 

6, 12, 0, 0, 12, 0, 0, 0, 6, 12, 0, 12, 0, 0, 0, 

12, 0, 0, 0, 0, 6, 18 

__________________________________ 

 

 
Figure 2.5: The first 6 non-zero shells of A2 is shown as 

large circles (incl. the one at the origin).  Notice that 

the number of points lying on each circle agrees with 

the corresponding coefficient of the Theta series. [13] 

 
The first 50 coefficients of the Theta series for 

D4 are shown in Table 3 
Table 2.3:  The first 50 coefficients of the Theta series 

with starting point at zero for the D4 lattice 

___________________________________ 

1, 0, 24, 0, 24, 0, 96, 0, 24, 0, 144, 0, 96, 0, 

192, 0, 24, 0, 312, 0, 144, 0, 288, 0, 96, 0, 

336, 0, 192, 0, 576, 0, 24, 0, 432, 0, 312, 0, 

480, 0, 144, 0, 768, 0, 288, 0, 576, 0, 96, 0 

 
The first 10 coefficients of the Theta series for 

E8 are shown in Table 4. [13] 
 

Table 2.4: The first 10 coefficients of the Theta series 

for the E8 lattice 

___________________________________ 

240, 2160, 6720, 17520, 30240, 60480, 

82560, 140400, 181160, 272160 

 

2.4   Quantization Algorithm 

Conway and Sloane [17] developed algorithms for 

finding the closest lattice point of the n-dimensional 

lattices such as Ζn, Dn and E8 lattice to an input 

vector x.   

Finding the closest point of D4 lattice- For a given x 

=(x1, x2, x3, x4) vector following are the steps to 

find out the closest lattice points of D4 lattice.  

Step1: f(x) = round(x).  

Step 2: Check sum {f(x)}, if it is even number, f(x) 

will be the closest lattice point of x, else if sum is an 

odd number then do step 3. 

Step 3: Calculate h(x). To calculate h(x) change one 

coordinate value of f(x), for which the difference 

between the original value of the coordinate of x and 

its round off value in f(x) is maximum. 

For example if x1= (0.2, 1.8, -0.7, 0.4) and x2 = 

(0.4, 0.7,-1.1, 1.8) are two input vectors, then 

according to the algorithm   

Step 1: f(x1) = (0, 2,-1, 0) and f(x2) = (0, 1, -1, 2) 
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Step 2: Sum{f(x1)} = 1 (odd number)  and 

Sum{f(x2)} = 2 (even number), for x2 Sum{f(x2)}is 

an even number, so the closest lattice point will be 

f(x2) i.e. (0,1,-1,2), while for x1 Sum{f(x1)}is an 

odd number so step 3 is 

Step 3: h(x1) = (0, 2,-1,1), sum{h(x1)}= 2 (even 

number), so the closest lattice point for x1 will be  

(0, 2,-1,1).  

Finding the closest point of E8 lattice- Following are 

the steps to find out the closest point of E8 lattice to 

x. Given  . 

Step 1- Compute f(x) and g(x), where f(x) is closest 

integer to x and g(x) is same as f(x) except that the 

worst component of x, that furthest from an integer, 

is rounded the wrong way. 

Step   2- Select whichever has an even sum of 

components, either f(x) or g(x), call the result z0  

Step 3-Compute  and  , where    and select 

whichever has an even sum of components, add   

and call the result z1. 

Step  4-Calculate (x- z0)2 and (x- z1)2          

Step 5- Compare the result.  If (x- z0)2 < (x- z1)2     

choose z0 as the closest point of x, else choose z1 

 

2.5 Indexing the vectors in truncated lattices 

When for a vector, lattice point is assigned, the 

next step is to assign index to that point.  There are 

various indexing methods proposed for different 

lattice types and truncation in the literature.     An 

indexing technique based on the notion of leader 

vector of a lattice was developed in [9] for  and   

lattices.  In [3] an enumeration based on signed 

leaders or generated signed leaders valid for a large 

class of lattices   ( , ,  and   ) is presented.  A method 

for indexing a leader based on partition function 

having link with the number theory is described in 

[11], [12].   

They used a partition function q(r, n) which not 

only gives the total number of leaders lying on a 

given hyper-pyramid but can also be used to provide 

unique indices for these leaders.  For indexing of 

lattice quantized vectors product code indexing 

method is used to assign indexes to the quantized 

vectors.  Index assigned by this method consists of a 

pair of prefix and suffix.  Where prefix is the radius 

R or norm or energy of the vector, it can be easily 

encoded.  Suffix is the index of the position of the 

vector on the shell of radius R.  Indexing and coding 

of suffix is a difficult operation.  Indexing of the 

suffixing can be done in two ways.   

In first method shown in Table 5 all same norm 

vectors of D4 lattice and pyramidal truncation are 

arranged in lexicographical order and indexes are 

assigned to them.  So in this case final index is 

(energy of the vector, index of the vector on the shell 

of same energy).  While in the second method index 

of suffix is based on leader addressing, in this case 

index of suffix consists of leader index and rank of 

the vector in the class of equivalence shown in 

Table2.6 

 
Table 2.5: Indexing of suffix based on enumerating 

lattice points 
Prefix 

(norm 
or 

radius 

or 
energy)  

Lattice code 

vector 

Suffix 

(position of  
the vector 

on the shell 

of energy 
2) 

Index= 

(Prefix, 
Suffix) 

2 2   0   0   0 1 (2,1) 

0   2   0   0 2 (2,2) 

0   0   2   0 3 (2,3) 

0   0   0  2 4 (2,4) 

1   1   0   0 5 (2,5) 

1   0   1   0 6 (2,6) 

1   0   0   1 7 (2,7) 

0  1  1  0 8 (2,8) 

0  1  0   1 9 (2,9) 

0  0  1  1 10 (2,10) 

1  0   0 -1 11 (2,11) 

1   0  -1  0 12 (2,12) 

1  -1  0  0 13 (2,13) 

0  1  0  -1 14 (2,14) 

0   1  -1  0 15 (2,15) 

0  0  1  -1 16 (2,16) 

0  0  -1  1 17 (2,17) 

0  -1  1  0 18 (2,18) 

0 -1  0  1 19 (2,19) 

-1  1  0  0 20 (2,20) 

-1  0  1  0 21 (2,21) 

-1  0  0  1 22 (2,22) 

0  0  0 -2 23 (2,23) 

0  0  -2  0 24 (2,24) 

0  -2  0  0 25 (2,25) 

-2  0  0  0 26 (2,26) 

0  0  -1  -1 27 (2,27) 

0  -1  0  -1 28 (2,28) 

0  -1  -1   0 29 (2,29) 

-1  0  0  -1 30 (2,30) 

-1  0  -1  0 31 (2,31) 

-1  -1  0  0 

 

32 (2,32) 
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Table 2.6:  Indexing of suffix based on leader 

indexing 

 
 

2.6 Coding of index 

Entropy coding or lossless coding is traditionally the 

last stage in an image compression scheme. The run-

length coding technique is very popular choice for 

lossless coding.  [13] Reports an efficient entropy 

coding technique for sequences with significant runs 

of zeros.  The scheme is used on test data 

compression for a system-on-chip design.  [14] the 

scheme incorporates variable length coding and 

Golomb codes which provide a unique binary 

representation for run-length integer symbol with 

different lengths.  Golomb coding algorithm 

contains tunable parameter M, run length N means 

count of continuous number of 0’s followed by 1.  

The first step in the encoding procedure is to select 

the Golomb code parameter M i.e. group size.  The 

value of M is taken in which the compression ratio is 

highest.  Once the group size M is determined, the 

runs of zeros in precomputed test set are mapped to 

groups of size M (each group corresponding to a run 

length).  The number of such groups is determined 

by the length of the longest run of zeros in the 

precomputed test set.  The set of run lengths {0, 1, 2 

. . ., m-1} forms group G1; the set {m, m+1, m+2 . . . 

, 2m-1}, G2 group; etc.  In general, the set of run 

lengths {(k-1) m, (k-1) m+1, (k-1) m+2 . . ., km-1} 

comprises group Gk [15].  To each group Gk, we 

assign a group prefix of (k - 1) 0s followed by 1.  

We denote this by 0(k-1)1.  If M is chosen to be a 

power of two, i.e., M = 2m, each group contains 2m 

members and a log2M-bit sequence (tail) uniquely 

identifies each member within the group.  Thus, the 

final code word for a run length L that belongs to 

group Gk is composed of two parts, a group prefix 

and a tail.  The prefix is 0(k-1)1 and the tail is a 

sequence of log2M bits. It can be easily shown that 

(k - 1) = (m mod M) i.e., k = (m mod M) + 1.  The 

encoding process is illustrated in table 1 for M = 4.  

First group will consist of the run length 

{0,1,2,3}and second group will consist of  the run 

length {4,5,6,7} and so forth. Group 1 will have a 

prefix {0}, group 2 will have prefix {10}, and so 

forth.  Since the value of group size is 4, the length 

of tail is log24=2. For run length 0 the tail is 

represented by bits {00, the tail for run length 1 is 

represented by bits {10}, and so forth.  Since the 

codeword is the combination of the group prefix and 

the tail, for run-length of 0 will have the codeword 

of {000}, the run length 1 will have codeword 

{001}, and so forth.  If the input sequence has 

continuous 1’s and 0’s then Golomb coding is not a 

suitable method to code this type of sequence, 

because after coding number of bits get increased.  

So the solution is, two value Golomb coding (2-V 

Golomb coding) [16].  This method is same as 

Golomb coding with the difference that we calculate 

run length as count of continuous 0’s or continuous 

1’s.  Advantage of such modification in algorithm is 

that as both runs of 0’s and 1’s are considered, so 

large number of continuous ones may also be coded 

with few bits, which is not possible with Golomb 

coding. 

 

Table 2.7: Golomb coding for M=4 
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Another advantage is that in Golomb coding if the 

input sequence does not end with one we have to 

apply extra bit 1 at the end but we don’t have to 

insert 1 at the end of sequence in two value Golomb 

coding.  This modified algorithm is known as 2-V 

Golomb coding as both runs of 0’s and 1’s are 

considering.  For example to represent 45 input bits 

shown as S, Golomb coding representation requires 

64 bits while with 2-value Golomb coding only 33 

bits  are required. S1 and S2 show group of input bits 

in case of Golomb coding and 2-value golomb 

coding respectively. Input sequence  

(S)={00000000100000000001000011111111111100

000001 1 } 

S1= {000000001   00000000001   00001  1  1  1  1  1  

1   1  1  1  1  1  00000001   1} 

S2= {00000000  1   0000000000  1   0000  

111111111111  0000000  11}   

 

Table 2.8: Comparison of Golomb coding and 

Two-value Golomb coding 

 
 

III. RESULT 
In this work, initially image coding using 

Lattice Vector Quantization (LVQ) with Generator 

Matrix (GM) and codebook is implemented.  When 

implementation using codebook is done,two 

codebooks are constructed, one with 256 lattice 

points that are closest to (0,0,0,0) and another with 

256 lattice points that are closest to (1,0,0,0).   

Energy for both the codes  is calculated.  When we 

compare the energy of both the codes we find that 

codes centered at a nonlattice point is lower energy 

code. 

 

IV. CONCLUSION 
In this work, different LVQ methods are 

applied for image compression on various standard 

test images and the outputs are analyzed.  Lattice 

Vector Quantization performance depends on the 

length of the codebook.  If the number of lattice 

points is less in a codebook, the time required to get 

quantized lattice point will be less but at the same 

time quality of reconstructed image will be 

degraded.  If the size of the codebook is larger then 

the time required to search nearest vector will be 

more.  So to avoid these situations, one solution is 

expansion of codebook when needed. 
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